Tank Level Prediction Using Kalman and Lainiotis Filters

Science Press Release Distribution Services

Tank Level Prediction Using Kalman and Lainiotis Filters

November 22, 2019 Mathematics and Computer Science 0

Tank level knowledge is very important in many applications, as in oil tank. The liquid in the tank can be static, filling or emptying, or sloshing, resulting to uncertain knowledge of tank level. In this work the tank level is predicted using prediction algorithms based on Kalman and Lainiotis filters. Time invariant and steady state prediction algorithms for static model and filling/emptying model are implemented. Time varying prediction algorithms for sloshing and filling/emptying and sloshing models are also implemented. The prediction algorithms’ behavior is examined concluding that the obtained predictions are very close to the real tank level. The calculation burdens of the prediction algorithms are derived, determining the faster prediction algorithm for each model.

For more information contact author

A. Polyzos
General Department, National and Kapodistrian University of Athens, Greece.
General Department, University of Thessaly, Greece.
School of Mechanical Engineering, National Technical University of Athens, Greece.
Cross Software Solutions IKE, Greece.
E-mail: thanos.polizos@cross-software-solutions.gr

View Volume: http://bp.bookpi.org/index.php/bpi/catalog/book/97c


Leave a Reply

Your email address will not be published. Required fields are marked *